Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs.

نویسندگان

  • B Gilbert
  • I R McDonald
  • R Finch
  • G P Stafford
  • A K Nielsen
  • J C Murrell
چکیده

The particulate methane monooxygenase gene clusters, pmoCAB, from two representative type II methanotrophs of the alpha-Proteobacteria, Methylosinus trichosporium OB3b and Methylocystis sp. strain M, have been cloned and sequenced. Primer extension experiments revealed that the pmo cluster is probably transcribed from a single transcriptional start site located 300 bp upstream of the start of the first gene, pmoC, for Methylocystis sp. strain M. Immediately upstream of the putative start site, consensus sequences for sigma(70) promoters were identified, suggesting that these pmo genes are recognized by sigma(70) and negatively regulated under low-copper conditions. The pmo genes were cloned in several overlapping fragments, since parts of these genes appeared to be toxic to the Escherichia coli host. Methanotrophs contain two virtually identical copies of pmo genes, and it was necessary to use Southern blotting and probing with pmo gene fragments in order to differentiate between the two pmoCAB clusters in both methanotrophs. The complete DNA sequence of one copy of pmo genes from each organism is reported here. The gene sequences are 84% similar to each other and 75% similar to that of a type I methanotroph of the gamma-Proteobacteria, Methylococcus capsulatus Bath. The derived proteins PmoC and PmoA are predicted to be highly hydrophobic and consist mainly of transmembrane-spanning regions, whereas PmoB has only two putative transmembrane-spanning helices. Hybridization experiments showed that there are two copies of pmoC in both M. trichosporium OB3b and Methylocystis sp. strain M, and not three copies as found in M. capsulatus Bath.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin.

Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this...

متن کامل

Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from methylocystis strain SC2.

In addition to the conventional pmoA gene (pmoA1) encoding the active site polypeptide of particulate methane monooxygenase, a novel pmoA gene copy (pmoA2) is widely distributed among type II methanotrophs (methane-oxidizing bacteria [MOB]) (M. Tchawa Yimga, P. F. Dunfield, P. Ricke, J. Heyer, and W. Liesack, Appl. Environ. Microbiol. 69:5593-5602, 2003). Here we report that the pmoA1 and pmoA2...

متن کامل

Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2.

Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1...

متن کامل

Effects of Nitrogen Load on the Function and Diversity of Methanotrophs in the Littoral Wetland of a Boreal Lake

Methane is the second most abundant greenhouse gas in the atmosphere. A major part of the total methane emissions from lake ecosystems is emitted from littoral wetlands. Methane emissions are significantly reduced by methanotrophs, as they use methane as their sole energy and carbon source. Methanotrophic activity can be either activated or inhibited by nitrogen. However, the effects of nitroge...

متن کامل

Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis.

The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 3  شماره 

صفحات  -

تاریخ انتشار 2000